Heli Gyro Comparison Essay


The RC helicopter gyro has made flying RC helicopters much easier, but with so many different options and features; the gyro, for many is a misunderstood little black box.

If you want some RC heli gyro recommendations, feel free to scroll down to the bottom of the page. If you want to learn more about gyros first, please keep reading.

Why are gyros so important and why do you need one for your RC helicopter?

As we already discussed in the yaw control section of RC helicopter theory , the reactive torque produced by RC helicopters is always changing. Any increase or decrease in engine speed or pitch of the main rotor blades results in a corresponding change in torque – sometimes a violent change. These changes are happening constantly and are always trying to spin (or torque) the helicopter around. Wind and wind gusts are likewise playing havoc with your yaw control and if not adjusted for, will whip the tail of your helicopter around.

I have tried to fly a RC helicopter without a gyro and to say it is difficult is the understatement of the century. I really don’t know how people controlled RC helicopters before gyros came along?

Moreover, RC helicopter gyro technology is what has made flybarless so popular. When talking about RC heli gyros, generally we are talking about a single gyro to keep the helicopter from spinning around wildly (yawing). Flybarless uses this same basic technology however it incorporates three gyros to detect and correct all three axis of heli movement (yaw, pitch, roll). Click here to be taken to my full flybarless write-up if you are also interested in flybarless.

How Does A RC Helicopter Gyro Work

The RC helicopter gyro is a small device that detects any yaw (left or right swinging) movement of the helicopter and automatically sends a command to the tail rotor servo to correct and stop/limit the yaw movement.

When I started out in this hobby 25 years or so ago, the gyros that were available had a small motor inside them that spun two heavy brass discs. Any change in yaw movement caused the motor to pivot as the spinning discs resisted the change due to gyroscopic effect.

Mechancial RC Helicopter Gyro

The movement of the motor was picked up by a magnetic sensor and converted into an electrical command to the tail rotor servo to limit the amount of yaw movement.

This type of gyro is now called a mechanical gyro and has gone the way of the dinosaur. That small motor spinning the heavy weights used up a considerable amount of battery power not to mention the added weight of these heavy brass discs.

RC helicopter gyros available today use either a non-mechanical piezo crystal yaw detector or better yet, a non-mechanical SMM (silicone micro machine) gyro. These new gyros use up much less battery power and are a fraction of the size & weight of the old style mechanical ones. With no moving parts, the reliability and lifespan is a huge improvement over the older mechanical gyros as well.

Pictured below is an old stlye mechanical gyro in the background and a newer electronic piezo crystal detector in the foreground. Notice the huge size difference, not to mention the much improved performance of the newer electronic ones.

The gyro itself simply plugs into your rudder/tail rotor channel of your receiver and your tail rotor servo then plugs into the gyro. In short, the gyro is in full control of your tail rotor and interprets tail rotor commands from the receiver. Only when the pilot sends a tail rotor command to the helicopter, will the gyro allow the helicopter to turn. How fast it turns depends on the amount of transmitter stick movement – at least for a heading hold gyro – our next topic.

Heading Hold vs. Yaw Rate Gyros

When you go RC helicopter gyro shopping, you will be faced with two main choices – Heading Hold - HH (also called Heading Lock) or Yaw Rate (YR) gyros.

Think of a yaw rate gyro as a dampener – it dampens the amount of yaw movement to the RC helicopter from any source. These sources include torque variation as the main rotor speed, pitch, and cyclic are adjusted, a gust of wind blowing the tail around (weathervane effect), or by a command from the transmitter via the pilot. All older mechanical RC heli gyros were classified as yaw rate as are the most basic electronic piezo crystal gyros of today.

A yaw rate gyro doesn’t stop the heli from turning; it just dampens the amount of turning to a controllable level. Let’s say you are hovering and a strong crosswind picks up. Your helicopter will still start to turn to point into the wind, but not in a violent blink of the eye spin that would happen without the gyro. The movement will be dampened so much, it will be easy to correct - even for a novice pilot.

The heading hold RC helicopter Gyro has changed so much about the way RC helicopters are flown and set up. Click the above link to find out all about them. Even simple micro coaxial RC helicopters like the Blade mCX2 are using heading hold/lock gyro technology.

If you are getting into hobby grade single rotor RC helicopters, a heading hold/lock gyro is pretty much the only option these days (most will still allow you to run them in Rate Mode if you so choose).

RC Helicopter Gyro Gain Setting

This one has caused so much confusion over the years, not just in understanding what gain is, but how to adjust it and why it has to be adjusted.

In the simplest terms, the gyro gain setting is used to adjust how sensitive the gyro is and how quickly it corrects for unwanted yaw movement. If you have your RC helicopter gyro gain or sensitivity set high, the gyro will be very sensitive and send fast commands to the tail rotor to correct for the smallest amounts of yaw change. Likewise, the lower the gain or sensitivity setting, the less sensitive the gyro is and the slower it will make changes to tail rotor pitch.

That is pretty straight forward, but now let’s look at the tail rotor of the helicopter, specifically the speed at which the tail rotor spins. As the tail rotor rpm increases, so does the sensitivity and how quickly it responds. In other words, the sensitivity and response of the tail rotor in a hover at a lower main rotor RPM / tail rotor RPM will be less and slower than when the heli is at flying at full power with faster main and tail rotor speeds.

This is apparent if you have your gyro gain setting set at the highest value in a hover just before the tail wags or hunts. Then if you increase the engine speed, all of a sudden the tail will start wagging or hunting – a sure sign your gain is set too high.

In this application, you will have to set your gyro sensitivity/gain for the best compromise between lower and high rotor speeds unless your gyro has a selectable remote gain feature. Tail wag can also be caused by a tail rotor servo that is too slow and has to play catch up with the gyro.

With remote gain, you use a switched channel on your transmitter (usually channel 5) or pair it to your rudder dual rate or flight mode toggle if your radio has that programming option to switch between two gain/sensitivity settings. One set for more gain during lower rotor rpm and the other setting is for less gain/sensitivity during high speed rotor rpm. This way you will still have good RC helicopter gyro performance during a low RPM hover and can simply switch to less gain when flying more aggressively with high head speeds.

When you are first learning, you don’t have to worry about this switching from hi to low gain settings since you will not be throwing your heli around and your rotor rpm will be very consistent. For scale flying, I never even worry about it either because I have a constant head speed.

Setting gain is fairly straight forward. As stated in the above discussion, gain is generally set to the highest value until the tail of the RC heli starts to wag or hunt after a quick tail rotor command. If you have a single gain setting gyro, you must set the gain at the highest engine/head speed, in short use your highest idle up setting (near full power) when setting your gain during a hover.

The best way to test your gain setting is to get your heli in a hover and give a quick tail rotor command. If your gain is set too high, the tail will hunt (wag) before it stabilizes. Simply land and turn down your gain setting, either on the gyro or in the gyro programing screen on your RC radio . After you set your high speed gain, set the low speed gain setting at a lower head speed hover if you have a dual gain gyro.

As I mentioned in day 1 of how to fly RC helicopters , set your gain to about 50% since you will not have the skill yet to hover let alone hover at full throttle when the controls are super sensitive. This 50% is generally a good starting point for most gyro/heli combinations. The instructions for both the helicopter and gyro should have starting point recommendations as well – use them first and adjust if required.

Installing Your RC Helicopter Gyro

 Installation of a RC helicopter Gyro is very simple in most cases but there are a few important points that I should mention.

Most gyros are mounted with two sided adhesive foam tape. This is supplied with the gyro and is very important not only to secure the gyro, but also allows it to function correctly. In the old days with mechanical RC helicopter gyros, foam tape was used to dampen vibrations that could damage the gyro itself.

This protection is required with the solid state piezo crystal & SMM gyros too, but there is another reason to use foam mounting tape. Piezos & SMM gyros are so good at sensing movement; they will actually pick up vibrations and can interpret them as small yaw movements resulting in unwanted corrections to the tail rotor.

It is very important you follow the mounting instructions that came with your gyro as to how much foam tape to use in order to eliminate erroneous gyro tail rotor commands.

If you are flying nitro RC helicopters, over time, this foam tape will usually get saturated with oil and the adhesion will fail. To keep this from happening, here is a good tip.

After you stick the RC helicopter gyro on the mounting plate with the double sided foam tape, spread a thin film of silicone caulking (clear is best) around the base of the gyro and the mounting platform it is secured to. The thin film of caulk acts as a gasket to keep the oil from getting to the mounting tape.

Remember, a thin coat only. If you goop it on heavy, the vibration isolation qualities of the foam tape will be diminished. It would also be very difficult to remove the gyro when servicing your heli if it is glued down with silicone.

If you have an electric RC heli, you of course don’t have to worry about nitro oil, but you do have to worry about the RC helicopter gyro's proximity to the electric motor or other strong magnetic fields.

Most manufacturers recommend the gyro has to be placed a minimum distance from the electric motor to avoid the strong magnetic fields produced by high power electric motors that would cause erroneous gyro operation. This distance is usually about 10 cm, but follow the instructions that come with your gyro when in doubt. Any good electric RC heli manufacturer knows this, and will have the gyro mounting plate set away from the motor.

Just A Few Gyro Recommendations

Since heading hold/lock RC helicopter gyros are the norm these days, I have a few recommendations. These are by no means the only good heading lock gyros out there, but they are all solid performers - even the super inexpensive $10 dollar Assan GA-250.

I was actually not expecting much from this little GA-250 gyro and purchased it just to see what kind of junk you can get for 10 bucks; but was presently surprised to experience how well it performed in both my Trex 250 and Blade 400... No it's not up to the performance of the better brands like Futaba, Spartan, or even the Align 750/780, but for 10 bucks if you have a small 250 to 400 size bird - it's actually amazing value for the performance, proving you don't have to spend a fortune on a gyro these days to get a decent, drift free, tail lock.

The total time it takes to receive your order is shown below:

The total delivery time is calculated from the time your order is placed until the time it is delivered to you. Total delivery time is broken down into processing time and shipping time.

Processing time: The time it takes to prepare your item(s) to ship from our warehouse. This includes preparing your items, performing quality checks, and packing for shipment.

Shipping time: The time for your item(s) to tarvel from our warehouse to your destination.

Banggood.com offers four different international shipping methods:

Shipping from Chinese Warehouse
Airmail and register airmailAreatime
United States, Canada, Netherlands, Spain, Germany, France, Japan, Republic of Korea, United Kingdom7-20 business days
Australia,New Zealand,Singapore7-25 business days
Belgium, Finland, Ireland, Norway, Portugal, Sweden, Switzerland7-25 business days
Russia, Denmark,India 10-30 business days
Mexico15-35 business days
Brazil20-50 business days
Other countries7-35 business days
Priority Direct MailAustria, Belgium, Denmark, Finland, Hungary, Czech Republic, Greece, Italy, Netherlands, Portugal, Sweden, Poland6-14 business days
United Kingdom4-9 business days
Germany, France7-12 business days
Australia7-13 business days
United States9-15 business days
Spain10-15 business days
European Direct MailCzech Republic,Germany,Spain,France,Italy,Poland,United Kingdom7-15 business days
Brazil Direct MailBrazil15-45 business days
Southeast Asia Direct MailSingapore,Vietnam,Thailand,Malaysia,Philippines,Sri Lanka2-9 business days
Japan Direct MailJapan3-9 business days
India Direct MailIndia8-16 business days
South Korea Direct MailKorea9-16 business days
Canada Dierct MailCanada5-15 business days
Russia Direct MailRussian Federation15-22 business days
Ukraine Direct MailUkraine12-18 business days
Middle East Direct MailUnited Arab Emirates, Bahrain, Oman, Saudi Arabia, Iran(Islamic Republic of), Kuwait,Egypt5-11 business days
Electric Vehicle Direct MailCzech republic, Hungary, Poland, Netherlands, Belgium, France, Denmark, Sweden, Germany,United States, United Kingdom, Italy, Portugal, Lithuania, Bulgaria, Spain, Austria, Croatia, Canada12-19 business days
Electric Vehicle Railway Direct MailUnited Kingdom,Italy,Germany,Poland,Austria,Czech republic,Slovakia (Slovak Republic),Belgium,Netherlands,Switzerland,Hungary,France,Spain,Portugal,Denmark,Lithuania,Latvia,Estonia,Sweden,Finland25-35 business days
ARAMEX Direct MailUnited Arab Emirates, India, Bahrain, Cyprus, Egypt, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Turkey5-10 business days
EMSBrazil25-55 business days
Other countries7-15 business days
Expedited ShippingBrazil7-25 business days
Other countries5-8 business days

Note: The shipping time mentioned above refers to the estimated time of business days that the shipment will take after an order has been shipped. Business days do not include Saturday/Sunday and any public holidays. These estimates are based on normal circumstances and are not a guarantee of delivery times. We are not responsible for the failures or delays in delivery resulting from any force majeure event, such as natural disaster, bad weather, war, public holidays, customs issues, and any other event beyond our direct control.

* Expedited shipping can not be used for PO Box addresses

Shipping From Local Warehouses
EU WarehousesUK: usually 3-6 business days
Other EU countries: usually 7-10 business days
US WarehousesUSA: usually 3-6 business days
Other American countries: usually 7-10 business days

Shipping from your local warehouse is significantly faster. Some charges may apply.

In addition, the transit time depends on where you're located and where your package comes from. If you want to know more information, please contact the customer service. We will settle your problem as soon as possible. Enjoy shopping!

0 thoughts on “Heli Gyro Comparison Essay”


Leave a Comment

Your email address will not be published. Required fields are marked *