Zustandsraum Beispiel Essay

29.10.2017 aktualizováno

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 93KB)

20.10.2017 aktualizováno

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

13.10.2017 aktualizováno

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

6.10.2017 aktualizováno

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 124KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

25.9.2017 aktualizováno

Stáhnout (PDF, 90KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 132KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 91KB)

Stáhnout (PDF, 91KB)

15.9.2017 aktualizováno

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

8.9.2017 aktualizováno

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 91KB)

4.9.2017 aktualizováno

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 94KB)

Stáhnout (PDF, 94KB)

 

25.8.2017 aktualizováno

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

 

21.8.2017 aktualizováno

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 92KB)

Stáhnout (PDF, 93KB)

Stáhnout (PDF, 93KB)

Rozhodnutí DK sezóna 2016/2017

Die Zustandsraumdarstellung ist eine von mehreren bekannten Formen der Systembeschreibung eines dynamischen Übertragungssystems. Das Zustandsraummodell gilt als ingenieurtechnisch geeignete Methode der Analyse und Synthese dynamischer Systeme im Zeitbereich und ist besonders effizient bei der regelungstechnischen Behandlung von Mehrgrößensystemen, nichtlinearen und zeitvariablen Übertragungssystemen. Dabei werden sämtliche Beziehungen der Zustandsgrößen, der Eingangsgrößen und Ausgangsgrößen in Form von Matrizen und Vektoren dargestellt.[1] Das Zustandsraummodell wird durch zwei Gleichungen – die Zustandsdifferenzialgleichung erster Ordnung und die Ausgangsgleichung – beschrieben.

Grundlagen der Systembeschreibung im Zustandsraum[Bearbeiten | Quelltext bearbeiten]

Die seit den 1960er Jahren bekannte Theorie des Zustandsraumes stammt aus den USA von dem Mathematiker und Stanford-Universitätslehrer Rudolf E. Kálmán. Sie ist etwa zeitgleich mit dem Auftreten erster leistungsfähiger Digitalrechner entstanden, die für den Umgang mit der Zustandsraumdarstellung unverzichtbar sind.

Im Hochschulbereich der ingenieurwissenschaftlichen Fachrichtungen der Automatisierung, Mechatronik, Elektrotechnik usw. nimmt insbesondere in der Regelungstechnik die Zustandsraumdarstellung zunehmend einen größeren Bereich ein. So gilt nach Darstellung einiger Hochschullehrer die Zustandsraumdarstellung bereits in der Vergangenheit als wesentlicher technologischer Impuls für die Luft- und Raumfahrt wie der im Apollo-Programm 1969 vollzogene Flug zum Mond.

Unter dem Begriff Zustandsraumdarstellung versteht man die Beschreibung eines dynamischen Übertragungssystems durch seine Zustandsgrößen (= Zustandsvariablen). Dabei wird die systembeschreibende Differenzialgleichung n-ter Ordnung mit n konzentrierten Energiespeichern in n Differenzialgleichungen 1. Ordnung zerlegt und in eine Matrizen/Vektor-Darstellung gebracht.

Die Zustandsvariablen beschreiben physikalisch den Energiegehalt der in einem technischen dynamischen System enthaltenen Speicherelemente. Sie bedeuten z. B. Spannung an einem Kondensator, Strom in einer Induktivität, bei einem Feder-Massesystem die potentiellen und kinetischen Energieanteile. Die Anzahl der Zustandsvariablen des Zustandsvektors ist die Dimension des Zustandsraumes. Im Zustandsvektor zum beliebigen Zeitpunkt t(0) sind alle Informationen des dynamischen Übertragungssystems enthalten.

Wesentliche Begriffe zum Verständnis der Beschreibung eines Übertragungssystems im Zustandsraum sind das Zustandsraummodell und die angewandte Normalform, nach der die Zustandsgleichungen und zugehörigen Matrizen / Vektoren ausgelegt sind. Das Zustandsraummodell kann für nicht sprungfähige Systeme direkt aus den Koeffizienten der systembeschreibenden Differenzialgleichung oder der zugehörigen Übertragungsfunktion erstellt werden.

Nach dem Signalflussplan der Regelungsnormalform kann mit Hilfe der zurückgeführten Zustandsvariablen ein dynamisch vorteilhafter Zustands-Regelkreis gebildet werden, der ohne Matrizendarstellung mittels numerischer Berechnung aller vorliegenden Signalgrößen simuliert werden kann.

Übersicht der Systembeschreibungen[Bearbeiten | Quelltext bearbeiten]

In der klassischen Regelungstheorie vor den 1960er Jahren hatte die Analyse und Berechnung von Regeleinrichtungen im Zeitbereich nur eine geringere Bedeutung als die Methoden im Frequenz- und s-Bereich, wie die Laplace-Transformation, der Frequenzgang und das Wurzelortsverfahren. Dabei wurden hauptsächlich lineare zeitinvariante Übertragungsglieder mit konstanten Koeffizienten behandelt. Nichtlineare Systeme wurden linearisiert.

Zum Verständnis der Theorie der Zustandsraumdarstellung sind folgende Kenntnisse der Systembeschreibungen erforderlich:

  • Gewöhnliche Differenzialgleichungen eines Übertragungssystems
Die Beschreibung von linearen Systemen mit konzentrierten Energiespeichern (im Gegensatz zu Systemen mit verteilten Speichern → Partielle Differenzialgleichung) erfolgt mit gewöhnlichen Differenzialgleichungen. Die Differenzialgleichung beschreibt ein lineares Übertragungssystem mit n Energiespeichern durch n Ableitungen der Systemausgangsgröße y(t) und m Ableitungen der Eingangsgröße u(t) des Systems.
Beispiel der Beschreibung eines Verzögerungsgliedes 1. Ordnung (PT1-Glied):
mit als die System-Zeitkonstante und dem Verstärkungsfaktor .
  • Beschreibung linearer Systeme im komplexen Frequenzbereich
Die Übertragungsfunktion ist eine mathematische Beschreibung für das Verhalten eines linearen, zeitinvarianten Systems im Frequenzbereich (s-Bereich) mit der komplexen Variablen s. Sie ist in der Regelungstechnik die häufigste Darstellungsform für die Beschreibung des Eingangs- und Ausgangsverhaltens von Übertragungssystemen.
Sämtliche Systemeigenschaften wie die Kriterien der Stabilität, Pole, Nullstellen, Verstärkung und Zeitkonstanten können aus der Übertragungsfunktion abgeleitet werden. Durch die Rücktransformation mittels der Laplace-Transformation kann das zeitliche Verhalten eines Übertragungssystems als Funktion des Eingangssignals berechnet werden.
Eine wesentliche Erkenntnis in der linearen Systembeschreibung ist die Tatsache, dass Differenzialgleichungen wie auch Übertragungsfunktionen in Polynomdarstellung beliebiger Ordnung auf 3 einfache Grundformen von Polynomen zerlegt werden können, die ein völlig unterschiedliches signaltechnisches Verhalten haben, ob sie im Zähler oder Nenner der Übertragungsfunktion stehen.

Siehe auch: „Charakterisierung der Regelstrecken“ im Artikel Regelstrecke

Beispiel der Beschreibung eines Verzögerungsgliedes 1. Ordnung (PT1-Glied):
  • Numerische Beschreibung linearer und nichtlinearer Systeme
Relativ einfache Übertragungssystem-Strukturen mit nichtlinearen Elementen, Begrenzungseffekten und Totzeitsystemen sind durch konventionelle Rechenmethoden im kontinuierlichen Zeitbereich nicht mehr geschlossen lösbar. Abhilfe bietet die numerische Berechnung im diskreten Zeitbereich Δt.
Anstelle der Berechnung des kontinuierlichen Verhaltens der physikalischen Größen eines dynamischen Systems als f(t) erfolgt die Umsetzung in eine quantisierte Berechnungsmethode mit konstanten kleinen Zeitintervallen, der diskreten Zeit Δt. Das dynamische System wird in seiner einfachsten Form durch 4 unterschiedliche Differenzialgleichungen erster Ordnung mit Differenzengleichungen beschrieben und algebraisch rekursiv berechnet. Wesentliches Merkmal der Rekursion ist die Folge k = (0, 1, 2, 3, …, kn), bei dem das Rechenergebnis der zurückliegenden Folge k-1 zu dem aktuellen diskreten Rechenergebnis der Folge k hinzu addiert wird.
Beispiel der Beschreibung eines Verzögerungsgliedes 1. Ordnung (PT1-Glied mit dem Verstärkungsfaktor KPT1) nach der Euler-Approximation:
Für die numerische Berechnung von Übertragungssystemen stehen verschiedene Rechenprogramme zur Verfügung.

Definition des Zustandes eines Übertragungssystems[Bearbeiten | Quelltext bearbeiten]

Während die vorstehenden Systembeschreibungen das Übertragungsverhalten eines Systems beschreiben, bedeutet die Beschreibung eines Systems im Zustandsraum, der momentane Zustand des Systems zu einer bestimmten Zeit t = 0.

Physikalisch betrachtet ist der Zustand eines dynamischen Systems durch den Energiegehalt der im System vorhandenen Energiespeicher bestimmt. Die Zustandsgrößen beschreiben den Energiegehalt der im System enthaltenen Speicherelemente. Sie können sich bei Anregung des Systems nicht sprunghaft ändern.

Den Wert der Zustandsgrößen zu diesem bestimmten Zeitpunkt t ist der Zustand des Systems und wird durch den Vektor zusammengefasst.

Das Verhalten des Übertragungssystems ist zu einem beliebigen Zeitpunkt zu der Zeit t = 0 für t > 0 vollständig gegeben, wenn

  • das mathematische Modell des Übertragungssystems bekannt ist,
  • die Anfangswerte der Energiespeicher bekannt sind und
  • die Eingangsgrößen des Systems bekannt sind.

Daraus folgt:

Bei Kenntnis des Systemzustandes und aller auf das System einwirkenden Signalgrößen kann das zukünftige Systemverhalten für t > 0 vorausbestimmt werden.

Zustand eines dynamischen Systems im Zustandsraum = Zustandsvektor zum Zeitpunkt .[2]

  • Der Zustandsvektor eines linearen Systems bestimmt mit dem Verlauf des Eingangssignals u(t) vollständig den Verlauf der Ausgangsgröße y(t) für .
  • Die Anzahl der Zustandsvariablen von ist die Dimension des Zustandsraumes.

Begriffsdefinitionen: Zustandsraum, Vektorraum, Phasenraum, Phasenporträt[Bearbeiten | Quelltext bearbeiten]

Im deutschen Sprachraum ist der Begriff der Zustandsraumdarstellung für den älteren und auch heute gültigen Begriff Systembeschreibung im Zustandsraum erst nach den 1970er Jahren entstanden.

In der Regelungstechnik wird der Begriff „Zustandsraum“ eines dynamischen Übertragungssystems meist wie folgt definiert:

„Der Zustandsraum ist der dem Zustandsvektor zugehörige n-dimensionale Vektorraum, in dem sich jeder Zustand als Punkt und jede Zustandsänderung des Übertragungssystems sich als Teil einer Bahnkurve (Trajektorie) darstellt.“

Behandlung linearer kontinuierlicher Systeme im Zustandsraum. In: Heinz Unbehauen: Regelungstechnik II.

Allgemein kann der Zustandsraum von dynamischen Systemen jedoch eine Mannigfaltigkeit sein, die nicht die Anforderungen an einen Vektorraum erfüllt. Diese besitzt nur in einer lokalen Umgebung um einen Punkt dieselben Eigenschaften wie ein Vektorraum.[3]

Das Systemverhalten eines dynamischen Übertragungssystems im Zustandsraum am Beispiel eines Verzögerungssystems höherer Ordnung lässt sich grafisch darstellen durch:

Bei der Zustandsraumdarstellung für zweidimensionale Systeme spannt der -Raum eine Fläche auf. Diese Beziehung wird mit Phasenraum und die sich ergebende Trajektorie wird mit Phasenporträt bezeichnet.
Das Phasenporträt für Systeme ohne Eingangssignal u(t) = 0 wird stets im Uhrzeigersinn zum Ursprung durchlaufen, vorausgesetzt, das System ist stabil.
Für 2- oder 3-dimensionale Zustandsvektoren sind zum Verständnis grafische Konstruktionen möglich.
Sind z. B. für ein PT2-Schwingungsglied mit der Dämpfung D = 0,06 die Eingangsgröße u(t) = 0 und die Anfangswerte und gegeben, dann verläuft die Bahnkurve (Phasenporträt) als Funktion der Zeit in dem x1-x2-Diagramm entsprechend der Eigenbewegung des Systems von einem Anfangswert spiralförmig (typisch für ein Schwingungsglied) zum Ursprung Null () nach endlicher, genügend langer Zeit.
Die Bahnkurve eines PT2-Gliedes mit der Dämpfung D = 1 und gleichen Anfangswerten kann den Ursprung – wie im Bild dargestellt – nicht umschlingen, sondern erreicht ihn von einem abfallenden Anfangsgradienten auf dem kürzesten Weg.
  • Aufzeichnung des Verlaufs der Zustandsvariablen f(t)
Durch Aufzeichnung des Verlaufs der Zustandsvariablen als Funktion der Zeit nach einem System-Eingangssprung u(t) wird ersichtlich, dass die Zustandsvariablen des Übertragungssystems sich dynamisch deutlich schneller verhalten, als die Ausgangsgröße .
Die Nutzung dieser vorteilhaften Eigenschaft ist von großer Bedeutung für das Regelverhalten eines Zustandsregelkreises. Die prägenden Begriffe für den Zustandsregelkreis sind Zustandsrückführung und zum konventionellen Gegenstück Ausgangsrückführung.
Siehe im Abschnitt Regelungsnormalform, drittes Bild „Grafische Darstellung der Zustandsvariablen“.

Beispiel Zustandsvariablen und Zustandsgleichungen für ein PT2-Schwingungsglied[Bearbeiten | Quelltext bearbeiten]

Standard-Übertragungsfunktion eines Schwingungsgliedes (PT2-Glied) mit konjugiert komplexen Polen (PT2KK-Glied):

Die zugehörige lineare Differenzialgleichung wird durch Umwandlung mit Hilfe der inversen Laplace-Transformation ermittelt:

In der Fachliteratur werden zur Vereinheitlichung die Koeffizienten der Ableitungen von y(t) (hier T², 2 D T) mit dem Buchstaben a dargestellt, für die rechte Seite der Ableitungen von u(t) mit b und fortlaufend nummeriert:

Die höchste Ableitung wird vom Koeffizienten freigestellt, in dem alle Terme der Gleichung durch dividiert werden und nach aufgelöst wird:[5]

Das in dem Strukturbild dargestellte Blockschaltbild entspricht der klassischen Variante der Lösung einer Differenzialgleichung mit Hilfe der Analogrechentechnik. Dieses Verfahren ist seit langem bekannt. Das Interesse galt natürlich nur dem Verhalten der Ausgangsgröße y(t).

Jede Ableitung der Ausgangsgröße y(t) wird einer Integration unterzogen. Jede Zustandsgröße wird mit dem zugehörigen Koeffizienten auf den Eingang zurückgeführt und von der Eingangsgröße u(t) subtrahiert.

Eine Differenzialgleichung n-ter Ordnung benötigt zur Lösung n Integrationen. Nach dem Blockschaltbild zur Lösung der Differenzialgleichung 2. Ordnung ergeben sich 2 Zustandsvariablen als Ausgänge der Integratoren. Durch Substitution werden die Ableitungen von y(t) durch die Bezeichnung der Zustandsvariablen x(t) wie folgt eingesetzt:

Damit lautet die Differentialgleichung mit den eingeführten neuen Bezeichnungen der Zustandsvariablen:

Die Umwandlung der systembeschreibenden Differenzialgleichung n-ter Ordnung in n-gekoppelte Differenzialgleichungen 1. Ordnung geschieht wie folgt:

Stellt man sich laut dem Blockschaltbild z. B. die Zustandsvariable vom Ausgang des Integrators auf den Eingang des gleichen Integrators versetzt vor, dann ist die Ableitung von .

Daraus folgen die Zustandsdifferentialgleichungen 1. Ordnung:

Die Zustandsgrößen und bilden den sogenannten Zustandsvektor .

Diese Gleichungen werden als Vektordifferenzialgleichungen in Matrizenform wie folgt geschrieben:

und die Ausgangsgleichung:

Es existieren verschiedene Signalflusspläne, die zur Lösung der Differenzialgleichung und der Bestimmung der Zustandsvariablen führen. Der Quotient kann entsprechend dem Blockschaltbild des Schwingungsglieds links der Subtraktionsstelle liegen, er kann rechts davon liegen, oder die Gleichung kann so umgeformt werden, dass die höchste Ableitung den Koeffizienten 1 hat. Alle diese Maßnahmen führen zu einem gleichen Ergebnis für die Ausgangsgröße y(t). Dies gilt aber nicht für die Definition der Koeffizienten der Zustandsgrößen.

Für Übertragungssysteme mit Polen und Nullstellen gibt es deshalb eine einheitliche Normalform, vorzugsweise die „Regelungsnormalform“ zur Darstellung der Signalflüsse.

Zustandsraummodell[Bearbeiten | Quelltext bearbeiten]

Bei der Zustandsraumdarstellung wird von einem Zustandsraummodell ausgegangen.

Das Blockschaltbild mit dem Signalflussplan des Zustandsraummodells zeigt ein Eingrößen-Übertragungssystem mit einem Eingangssignal u(t) und einem Ausgangssignal y(t) in einer allgemeinen Darstellung für ein lineares Übertragungssystem mit n Differenzialgleichungen 1. Ordnung. Es entspricht der Systemdarstellung der Regelungsnormalform. Anstelle eines Differenzialgleichungssystems n-ter Ordnung tritt eine Ableitung des n-dimensionalen Zustandsvektors 1. Ordnung . Diese Ableitung ist Eingangsgröße eines Integrators; daraus ergibt sich der Zustandsvektor .

Die Zustandsgleichungen für die Ableitung des Vektors

Blockdiagramm eines Übertragungssystems als Ein- und Mehrgrößensystem.
Phasenporträt eines PT2-Schwingungsgliedes und eines PT2-Gliedes im Zustandsraum.
Blockschaltbild eines Signalflussplanes zur Bestimmung der Zustandsvariablen im Zustandsraum.
Symbolisches Blockschaltbild eines Modells eines Übertragungssystems in der Zustandsraumdarstellung für ein Eingrößensystem.

0 thoughts on “Zustandsraum Beispiel Essay”

    -->

Leave a Comment

Your email address will not be published. Required fields are marked *